Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.

Identifieur interne : 000245 ( Main/Exploration ); précédent : 000244; suivant : 000246

Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.

Auteurs : Zhixin Jing [République populaire de Chine] ; Hong Feng

Source :

RBID : pubmed:25957260

Descripteurs français

English descriptors

Abstract

The proline iminopeptidase (PchPiPA) of Phanerochaete chrysosporium catalyze specifically hydrolysis of N-terminal proline from peptides. The substrate Pro-pNA was docked into the catalytic pocket and several amino acid residues were identified to interact or associate with the substrate. Eight residues were selected for site-directed mutagenesis. The wild-type and mutant proteins were expressed in Escherichia coli and purified. Kinetic parameters were calculated by hydrolyzing Pro-pNA for these enzymes. Substitution of two Glu residues (Glu198 and Glu227) which interact with the substrate via formation of hydrogen bond, led to deleterious effect on catalytic efficiency (k(cat)/K(m)) due to decrease of k(cat) and increase of K(m). Four Phe residues consisting of catalytic pocket and surrounding the docked substrate, were substituted with Ala, resulting in decrease in k(cat)/K(m) to various extents. Substitution of two residues (Val267 and Cys267) localized at the deep end of the catalytic pocket also yielded negative influence on the substrate hydrolysis. Besides, all the mutants except E227Q exhibited lower thermostability than the wild-type did, indicating that these mutations may modulate the local structure. In conclusion, these amino acid residues may play an important role in maintaining local environment of the impacted catalytic pocket and be involved in recognizing or positioning the substrate.

DOI: 10.1007/s10930-015-9611-4
PubMed: 25957260


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.</title>
<author>
<name sortKey="Jing, Zhixin" sort="Jing, Zhixin" uniqKey="Jing Z" first="Zhixin" last="Jing">Zhixin Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Hong" sort="Feng, Hong" uniqKey="Feng H" first="Hong" last="Feng">Hong Feng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25957260</idno>
<idno type="pmid">25957260</idno>
<idno type="doi">10.1007/s10930-015-9611-4</idno>
<idno type="wicri:Area/Main/Corpus">000252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000252</idno>
<idno type="wicri:Area/Main/Curation">000252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000252</idno>
<idno type="wicri:Area/Main/Exploration">000252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.</title>
<author>
<name sortKey="Jing, Zhixin" sort="Jing, Zhixin" uniqKey="Jing Z" first="Zhixin" last="Jing">Zhixin Jing</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan</wicri:regionArea>
<wicri:noRegion>Sichuan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Hong" sort="Feng, Hong" uniqKey="Feng H" first="Hong" last="Feng">Hong Feng</name>
</author>
</analytic>
<series>
<title level="j">The protein journal</title>
<idno type="eISSN">1875-8355</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acids (chemistry)</term>
<term>Amino Acids (metabolism)</term>
<term>Aminopeptidases (chemistry)</term>
<term>Aminopeptidases (genetics)</term>
<term>Aminopeptidases (metabolism)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (genetics)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (composition chimique)</term>
<term>Acides aminés (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Aminopeptidases (composition chimique)</term>
<term>Aminopeptidases (génétique)</term>
<term>Aminopeptidases (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (génétique)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Stabilité enzymatique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acids</term>
<term>Aminopeptidases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminopeptidases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Aminopeptidases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acides aminés</term>
<term>Aminopeptidases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aminopeptidases</term>
<term>Escherichia coli</term>
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Aminopeptidases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Enzyme Stability</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Simulation de docking moléculaire</term>
<term>Spécificité du substrat</term>
<term>Stabilité enzymatique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The proline iminopeptidase (PchPiPA) of Phanerochaete chrysosporium catalyze specifically hydrolysis of N-terminal proline from peptides. The substrate Pro-pNA was docked into the catalytic pocket and several amino acid residues were identified to interact or associate with the substrate. Eight residues were selected for site-directed mutagenesis. The wild-type and mutant proteins were expressed in Escherichia coli and purified. Kinetic parameters were calculated by hydrolyzing Pro-pNA for these enzymes. Substitution of two Glu residues (Glu198 and Glu227) which interact with the substrate via formation of hydrogen bond, led to deleterious effect on catalytic efficiency (k(cat)/K(m)) due to decrease of k(cat) and increase of K(m). Four Phe residues consisting of catalytic pocket and surrounding the docked substrate, were substituted with Ala, resulting in decrease in k(cat)/K(m) to various extents. Substitution of two residues (Val267 and Cys267) localized at the deep end of the catalytic pocket also yielded negative influence on the substrate hydrolysis. Besides, all the mutants except E227Q exhibited lower thermostability than the wild-type did, indicating that these mutations may modulate the local structure. In conclusion, these amino acid residues may play an important role in maintaining local environment of the impacted catalytic pocket and be involved in recognizing or positioning the substrate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25957260</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1875-8355</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The protein journal</Title>
<ISOAbbreviation>Protein J</ISOAbbreviation>
</Journal>
<ArticleTitle>Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>173-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10930-015-9611-4</ELocationID>
<Abstract>
<AbstractText>The proline iminopeptidase (PchPiPA) of Phanerochaete chrysosporium catalyze specifically hydrolysis of N-terminal proline from peptides. The substrate Pro-pNA was docked into the catalytic pocket and several amino acid residues were identified to interact or associate with the substrate. Eight residues were selected for site-directed mutagenesis. The wild-type and mutant proteins were expressed in Escherichia coli and purified. Kinetic parameters were calculated by hydrolyzing Pro-pNA for these enzymes. Substitution of two Glu residues (Glu198 and Glu227) which interact with the substrate via formation of hydrogen bond, led to deleterious effect on catalytic efficiency (k(cat)/K(m)) due to decrease of k(cat) and increase of K(m). Four Phe residues consisting of catalytic pocket and surrounding the docked substrate, were substituted with Ala, resulting in decrease in k(cat)/K(m) to various extents. Substitution of two residues (Val267 and Cys267) localized at the deep end of the catalytic pocket also yielded negative influence on the substrate hydrolysis. Besides, all the mutants except E227Q exhibited lower thermostability than the wild-type did, indicating that these mutations may modulate the local structure. In conclusion, these amino acid residues may play an important role in maintaining local environment of the impacted catalytic pocket and be involved in recognizing or positioning the substrate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Zhixin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Protein J</MedlineTA>
<NlmUniqueID>101212092</NlmUniqueID>
<ISSNLinking>1572-3887</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.11.-</RegistryNumber>
<NameOfSubstance UI="D000626">Aminopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.11.5</RegistryNumber>
<NameOfSubstance UI="C022450">prolyl aminopeptidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000626" MajorTopicYN="N">Aminopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25957260</ArticleId>
<ArticleId IdType="doi">10.1007/s10930-015-9611-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2008 Jun;7(6):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Aug 15;416(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1994 Nov;116(5):943-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jul;65(1):121-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 May;59(5):1430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8100130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12513999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 May 1;55(2):288-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Feb;272(6):673-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2000 Sep;1(2):209-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12369917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1994 Oct;116(4):818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2000 Oct;128(4):673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11011150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 11;1429(2):501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 May;140 ( Pt 5):1133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8025678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1999 Sep;126(3):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Sep;153(Pt 9):3023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Nov;49(11):1342-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21689943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Sep;80(4):719-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Feb;188(4):1599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Nov;155(Pt 11):3673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Mar;140 ( Pt 3):527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8012575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Jun;47(3):308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Dec;73(4):1048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Jan 2;17(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9427736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Sep;76(18):6180-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Feb 15;12 Suppl 1:S33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1996 Mar;64(3):702-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2010 Jul;92(7):779-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Sep;9(6):1203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7934933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1959 Jul;234(7):1740-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13672956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):4736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Feng, Hong" sort="Feng, Hong" uniqKey="Feng H" first="Hong" last="Feng">Hong Feng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jing, Zhixin" sort="Jing, Zhixin" uniqKey="Jing Z" first="Zhixin" last="Jing">Zhixin Jing</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000245 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000245 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25957260
   |texte=   Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25957260" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020